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to the 

We show that for certain classes of deterministic dynamical systems the Perron- 
Frobenius equation reduces to the Fokker-Planck equation in an appropriate 
scaling limit. By perturbative expansion in a small time scale parameter, we also 
derive the equations that are obeyed by the first- and second-order correction 
terms to the Fokker-Planck limit case. In general, these equations describe 
non-Gaussian corrections to a Langevin dynamics due to an underlying 
deterministic chaotic dynamics. For double-symmetric maps, the first-order 
correction term turns out to satisfy a kind of inhomogeneous Fokker-Planck 
equation with a source term. For a special example, we are able solve the first- 
and second-order equations explicitly. 

KEY WORDS: Perron-Frobenius equation; Fokker-Planck equation; 
scaling limits; maps of Kaplan-Yorke type; corrections to Gaussian behavior; 
O-expansion. 

1. I N T R O D U C T I O N  

An in teres t ing  p r o b l e m  of  stat ist ical  physics is the ques t ion  of  how diffusion 
processes a n d  B r o w n i a n  m o t i o n  can  arise f rom simple determinis t ic  
dynamica l  systems wi th  s t rong  chaot ic  propert ies .  ~l-~s~ It has become 
evident  tha t  a large phase-space  d i m e n s i o n  is no t  necessary to ob t a in  
" r a n d o m  behav io r"  of  B r o w n i a n  m o t i o n  type. Ear ly  work  in this d i rec t ion 
is due  to Billingsley. ~1 It has  become clear tha t  n o t  on ly  B r o w n i a n  m o t ion ,  
bu t  also Langev in  processes can  be genera ted  by smoo th  low-d imens iona l  
m a p p i n g s  in an  app rop r i a t e  scal ing limit. (9-~5~ This  concept  has t u r n e d  ou t  
to be fruitful; in par t icu la r ,  a spa t io t empora l  vers ion  has recently led to a 
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successful description of the probability densities of velocity signals 
measured in fully developed turbulent nows. (16) 

In the simplest case, namely the case of a linear Langevin equation, 
the relevant class of dynamical systems is given by maps of Kaplan-Yorke 
type. ~tT) Indeed, Kaplan-Yorke maps, originally introduced as simple 
examples where one can study fractal dimensions and Liapunov exponents 
quite easily, do have an important physical interpretation (besides the 
"filtered map" interpretation of ref. 18). They can be regarded as the deter- 
ministic chaotic analog of a linear Langevin equation, where the Gaussian 
white noise is replaced by a chaotic dynamics. Thus, in the following we 
call these general types of mappings "maps of linear Langevin type." For 
a recent introduction to the subject and also a generalization to nonlinear 
Langevin equations, leading to "maps of nonlinear Langevin type," see 
ref. 13. 

In general, maps of linear Langevin type generate complicated (non- 
Gaussian, non-Markovian) stochastic processes. However, one can 
rigorously prove that this complicated process reduces to the Ornstein- 
Uhlenbeck process (a Gaussian Markov process) in an appropriate scaling 
limit.cg. ~o) The scaling limit means that the time difference r between subse- 
quent chaotic "kicks" on the particle approaches zero and that the kick 
strengths are rescaled by x/~. Decreasing r, there is a transition scenario 
from complicated chaotic behavior to Gaussian random behavior. ~9) 

Of course, for small but finite r there are corrections to the Gaussian 
limit behavior due to the underlying deterministic dynamics. What are the 
general equations governing these corrections? This is an important ques- 
tion; since every physical system possesses a finite time scale ~, the limit 
r--, 0 (leading to Gaussian white noise) is just an idealization. 

The idea of this paper is to derive a set of equations that is fulfilled by 
the corrections to the Gaussian limit behavior in the general case, i.e., for 
a priori arbitrary strongly mixing driving forces. Indeed, we will show how 
the Fokker-Planck equation arises from a deterministic dynamics in the 
scaling limit, and derive the general equations governing the next-order 
corrections to the Fokker-Planck equation for small but finite r. Our 
starting point is the Perron-Frobenius equation, describing the conserva- 
tion of probability for a dynamical system of Langevin type. This functional 
equation is much too complicated to be solved exactly. However, near the 
Gaussian limit, we may expand this equation in a perturbative way in the 
small time scale parameter r ~/2. The resulting equations are still com- 
plicated, but nevertheless they are much simpler than the original equation. 
The expansion method allows us to derive the Fokker-Planck equation 
directly from the Perron-Frobenius equation, and, perhaps even more 
important, it provides us with the equations that are obeyed by the 
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next-order correction terms. In the simplest case, the first-order correction 
term turns out to obey a kind of inhomogeneous Fokker-Planck equation 
with an external source term. 

Our approach bears some similarities to van Kampen's O-expansion 
method. (2~ Van Kampen starts with the master equation. He then makes 
a systematic series development in a small parameter s where s 
is usually the volume of the system. Similarly, we start from the Perron-  
Frobenius equation (representing the balance equation of the probability) 
and expand in the small time scale parameter r 1/2. The difference is that our 
method yields the correction terms produced by some underlying deter- 
ministic ergodic dynamics, whereas van Kampen starts from a stochastic 
process that is Markovian and governed by the master equation. Since we 
do not use the Markov assumption, our resulting equations are much more 
complicated. Nevertheless, in a certain sense our approach presented in 
the following sections can be regarded as the analog of van Kampen's 
O-expansion in nonlinear dynamics. 

We should remark that for a series expansion to make sense, we 
implicitly assume that the probability density functions are smooth analy- 
tical functions. Indeed, this assumption is well supported by various 
numerical experiments. We have not found a single example of a map of 
linear Langevin type driven by a mapping with strong mixing properties 
where for sufficiently small r the corrections to the Gaussian distribution 
were nonsmooth or fractal. In fact, one numerically observes that all 
singularities of the density [described by a nontrivial f (~)  spectrum] 
already get lost for "medium" values of r .  (19) It is therefore reasonable to 
assume that near the Gaussian limit case, for sufficiently small r, a series 
expansion makes sense. Starting from this ansatz, the Fokker-Planck equa- 
tion and the next-order equations are obtained by a systematic power 
expansion in the time scale parameter r ~/2. While the Fokker-Planck equa- 
tion is the zeroth-order contribution and exact in the limit r ~ 0, the new 
message of the present paper is the fact that there are general equations 
that govern the non-Gaussian corrections in the vicinity of the Fokker-  
Planck limit case, i.e., the contributions of order r )/2 and r. For a special 
example, we show that these equations can be solved exactly. The proba- 
bility densities calculated in this way are in perfect agreement with a 
numerically obtained histogram of iterates, which converges to the inva- 
riant density dlae to ergodicity. The ergodicity of the systems studied here 
was proved in ref. 1 I. 

On the other hand, if the time scale parameter r increases to larger 
values, one typically observes a critical point rc where the probability 
density of the velocity of the particle suddenly becomes nondifferentiable. 
At this point the perturbation theory presented here breaks down, and we 
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have a kind of phase transition point where complicated nonanalytical 
behavior sets in. The critical value rc where this happens is different from 
mapping to mapping, and can be regarded as a further interesting charac- 
teristic quantity associated with each chaotic mapping. For example, for 
kicks generated by the Ulam map we numerically estimate rc ~ 0.20, for the 
third-order Tschebyscheff map we estimate L.-~ 0.47. Whatever map is 
chosen, the perturbative expansion described in the following sections 
makes sense for r < zc only, and to have good convergence one should even 
require z ~ r~. 

This paper is organized as follows: In Section 2 we expand the Perron-  
Frobenius equation of maps of linear Langevin type in the small time scale 
parameter rl/2. In Sections 3 and 4 we derive the Fokker-Planck equation 
and the general equations that govern the non-Gaussian corrections of the 
probability density of the velocity of the particle. As an example where the 
functional equations can be solved explicitly, in Section 5 we calculate non- 
Gaussian corrections for kicks generated by the Ulam map. 

2. PERTURBATIVE EXPANSION OF THE 
PERRON-FROBENIUS EQUATION 

Consider a dynamical system of linear Langevin type 

f :  x , + , =  T(x,,) 
Y,,+ l = 2y,, + ri/Zx,, ( 1 ) 

Here 2e  (0, 1) and r >  0 are parameters, and 7'." X ~  X is some ~0-mixing 
mapping/9~ The map f is obtained by integration from the following deter- 
ministic chaotic analog of a Langevin equation: 

Y=--yY+r 1/2 ~ x , , _16( t - -nr )  (2) 
n =  I 

x,,+l = T(x , )  (3) 

T determines the time evolution of the kicks. Y(t) can be regarded as 
the velocity of a kicked damped particle. Equation (1) describes the 
stroboscopic time evolution of y,, := Y(nz + 0). The damping constant y > 0 
and the time difference r between kicks are related to the parameter 2 by 
2 = e-Y'. For convenience, we will deal with a one-dimensional phase space 
X, although a similar analysis can be performed for higher-dimensional 
cases. The inverse map is given by 

f - i :  x , , = T - l ( x , , + l )  (4) 
y,, = 2 - l ( y , ,+ l  - -  " r  1)) 
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In general, there are several preimages T -~. The absolute value of the 
Jacobi determinant o f f  is 

Idet Ofl  =2  IT'(x)l (5) 

The Perron-Frobenius equation 

p,,+,(x', y ' ) =  ~ p,,(x, y) (6) 
...... /,s-'r 2 1 T ' ( x ) l  

governs the time evolution of probability densities p,,(x, y); it can be 
written as a sum over the preimages of T: 

1 
).p,,+~(x', y)= y' p,,(x, ) ,-~(y-r'ax)) (7) 

IZ'(x)l xeT- I (x  ') 

Equation (7) with 2 = e -~'* is the starting point of our consideration. 
We will expand it with respect to the parameter r t/z, which is supposed to 
be small. In our perturbative analysis we will include all terms up to fourth 
order in r t/z. To simplify the notation, we will not explicitly write down any 
rest term of 0(r5/2), but suppress it in all equations. Without restriction of 
generality we set ? = 1, obtaining up to fourth order in r ~/'- 

2 e " 1 - r + � 8 9  2 (8)  

Since 

1 2 2-1(y--r t /Zx)  =(1  + r +  gr ) ( y - - r m x )  

= y -- rl/2x + ry -- r3/Zx + �89 

(9) 

(10) 

we obtain by Taylor expansion 

p,,(x, 2 - J ( y -  r ~/2x)) 

l r-~y)~y p,,(x, y) = pn(X, y )  "l- ( -- "cl/2x -I- ry  -- r3/2x -I- -~ 

1 , 
+ ~ (rx- + r2y 2 - 2"c3/2xy + 2~2x 2 ) 0 ~  z p,,(x, y) 

0 3 0 4 

822/79/5-6-6 
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=p.(x, y)+r~/2 { - x  f---fP.(x,Y)} 

{ o, ,,I} a 1 X ~ y 2 p , , ( x  ' +r y-~yp.(x ,y)+~ 

02 03 
+r3 /2{ -x~P , , ( x , y ' -Xy~yzP , , ( x ,Y ) -+X3~y3P. (x ,Y ' }  

02 02 
+ r 2 gy~yp,,(x,1 3 y)+gl y2 ~y2 p,,(x, y) + x 2 ~ p.(x, y) 

1 2 03 1 x4 O 4 y ) }  
+ ~ x y -~y 3 p . ( x, Y ) + -~ ~~y 4 P . ( x, (11) 

Let us introduce a continuous-time suspension p(x, y,  t) defined by 

p.(x, y)=p(x, y, t) (t=nr) (12) 

Since we keep v small but finite, there are infinitely many such smooth 
functions p(x, y, t). At the present stage, we need not fix the function 
p(x, y, t) for times t other than nv. The following considerations are valid 
for any smooth suspension p(x, y, t) satisfying Eq. (12). A Taylor expan- 
sion yields 

Pn+ l(x, y)=p(x, y, n r + r )  

O 1 ~O 2 
= p(x, y, n~) + ~-~ p(x, y, nr) + ~ ~- b-~ p(x, y, n~) 

Hence 

),p,,+l(x', y) 

( I , \ f  , 0 (X,, 1 0 2 } r 2 - / 0 ( X  t, y, t) = 1 - - r + ~ r - ) ( p ( x , y , t ) + r - ~ p  y , t )+~ Ot 2 

{ o , }  =p(x', y , t )+ r -p(x ' ,  y , t ) + ~ p ( x ,  y,t) 

1 , 1 02 , 
+r2{~p(x,y, t)--f f--~tP(x' ,y, t)+-~-~P(x,y, t)  } (t = n~) 

(13) 

The function p(x, y, t) still depends on 2 and thus o n  z "1/2, since for 
stroboscopic times t=nr it is the density p.(x, y) of the map (1) which 



From Perron-Frobenius to Fokker-Planck Equation 881 

explicitly depends on 2. Inspired by van Kampen ' s  g2-expansion t2~ and the 
results of ref. 12, we now make  the following ansatz: 

p(x, y, t) = ~o(x, y, t) + rn/2a(x, y, t)+ rb(x, y, t) 

+ rS/2c(x, y, t) + r2d(x, y, t) (14) 

Here ~o, a, b, c, and d are r- independent  functions. This ansatz is the 
fundamental  assumption of this paper.  It says that  we assume that among  
the infinite set of  smooth  suspensions p(x, y, t) there is at least one that 
satisfies Eq. (14) for arbitrary r in the vicinity of  0. This includes the limit 
r ~ 0, where a cont inuum is approached,  and thus we actually expect that 
the validity of Eq. (14) for arbi trary r fixes unique smooth  functions 
~o, a, b, c ..... On the other hand, the ult imate goal of this paper  is to 
calculate finite-r corrections, and for finite r we need the functions 
q~, a, b, c .... for s troboscopic times only. 

Putt ing the ansatz (14) into Eqs. ( I1)  and (13) and compar ing  
different powers of r 1/2, one finally obtains the following five coupled 
functional equations for q~, a, b, c, and d: 

0(~~ 

1 
~o(x', y, t) = ~" /It)'T"x------- 7 ~o(x, y, t) (15) 

x ~ T - ~ ( x  ') 

O(r'/2): 

a(x', y, t)= y" a(x, y, t ) - x  q~(x, y, t) 
xe T-I(x ' ) 

(16) 

O(r' ): 

0 
b(x', y, t)-q~(x' ,  y, t) +-~ cp(x', y, t) 

,T,x,,I{ = ~ b(x, 
x,~ T - I ( x  ') 

x a O y , t ) -  -~ya(X, y , t ) +  y~y  ~o(x, y, t) 

1 X2 9 2 } + i ~ ~oIx, y, t/ (17) 
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0(33/-'): 

c(x', y, t ) -a(x ' ,  y, t )+~ta(x ,  y, t) 

IT'(x)l c ( x , y , t ) - x  b ( x , y , t ) + y  a(x,y, t)  
x e T - I t . c )  

1 , 02 0 02 
+~X-~yza(x,  y, t)--X-~y r y, t)--xy ay-- ~ ~o(x, y, t) 

1 3 03 - g x  b-~y~ ~oIx, y, t/} (18) 

O(r2): 

0 , 1 
d(x', y, t ) -b(x ' ,  y, t ) + ~ b ( x ,  y, t )+~  q~(x', y, t) 

O 1 ~2 
otto( , y, t ) + ~ - ~ o ( x ' ,  y, t) 

= Y" IT'(x)] d(x ,y , t ) -X-~yC(X,y , t )+y  b(x,y , t )  
x e  T -  I(.x "') 

1 , 0 2  
+'~X-~yzb (x , y , t ) - x  a(x,y, t)  

02 1 ~ 03 
- Xy oy--S a(x, y, t) --~ x -~g a(x, y, t) 

1 0 1 y2 02 02 +5y~o(x ,  y,t)+5 -g~y,~o(x,y,t)+x2?-Ty~o(x,y,t) 

1 2 03 04 } 
+~ x y oy---5 ~o(x, y, t) +lx4-~y4 q~(x, y, t) (19) 

Substituting Eq. (15) into Eq. (17), we obtain 

b(x', y , t )= r~ - 1 { x O .,o -,,x.>lT'(x)l b(x, y , t ) - .  ~ya(X, y,t) 
02 0 

+ (yrp(x ,y , t ) )+~x 2 -  Oy 2 rp(X, y, t ) - - ~  rp(X, y, t)} (20) 
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Notice that the last term on the right-hand side of Eq. (20) is a Fokker-  
Planck operator with variable variance x 2. Equation (20) is a kind of 
combination of a Perron-Frobenius equation for the map T with a 
Fokker-Planck equation, where the variance is not constant, but given 
by x 2. 

Similarly, putting Eq. (16) into Eq. (18) we get 

c(x', y, t)= IT'(x)l c(x, y, t ) - x  b(x, y, t) 
x ~ T - I { x  ") 

0 1 02 O 
+-~y (ya(x, y, t) ) +~ x2-~y2 a(x, y, t) ---~ a(x, y, t) 

~_~ 8 O 02 
- 2 x  q~(x,y,t)+x~-fy-~q~(x,y,t)--xy-~y2~O(x,y,t ) 

1 303 } 
- -~x ~y3~O(x, y,t) (21) 

Finally, putting Eqs. (15) and (20) into Eq. (19), we obtain 

d(x', y, t)= 
x ~  

1 02 0 
+~ x2~y2b(x, y, t)-~tbIx, y, t) 

[ 02] O 0 1 x2 0 +x - 2 + b S - v ~ - g  ~ ~a(x,y, t)  

0 1 ~ 02 0 (x, 
+-~y(yCp(x, y,t))+sx--~yZCp(x, y , t )--~q~ y,t) 

02 ] 0 1 x2 0 
at (y~o(x, y, t)) +-~ ~y2 CP(x, y, t)--~t q~(x, y, t) 

I ~ I ~ a z 
+~ y ~ ~oIx, y, t)+~ y-~y,_~o(x, y, t) 

I a 1 o2]o 2 +x 2 1+ lye+  ~--~ ~y2~OIx, y,t) 

1 0 1 02 } 
--5~o(x, y, t)+-~cp(x, y, t)---~-~cp(x, y, t) 

r_,(.,.,~ ] T,(x)[ d(x ,y , t ) -X~yC(X,y , t )+  (yb(x, y, t)) 

(22) 
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3. I N T E G R A T I O N  O V E R  x 

The previous equations are coupled functional equations connecting 
the functions q~, a, b, c, and d. These functions contain information on the 
density of the entire 2-dimensional (or even higher-dimensional) phase 
space, i.e., they depend on the tuple (x, y). In many cases, however, we are 
just interested in the marginal distribution 

p(y, t) = I dx p(x, y, t) (23) 

of the y variable, obtained by integration over all possible x values. In the 
physical picture, p(y, t) corresponds to the velocity distribution of the 
particle, whereas p(x, y, t) has no direct physical interpretation. The 
integration over x indeed yields a simplification, transforming the coupled 
functional equations into coupled differential equations. 

Equations (15)-(22) are equations of the general form 

1 
f (x ' ,  y, t) = ~ ]T'(x)---~[" g(x, y, t) (24) 

xET-I(x') 

where f and g are appropriate functions. Without restriction of generality, 
let us assume that the phase space of the mapping T is the interval 
X =  [ -  1, 1 ]. The marginal functions, obtained by integration over all x 
values, are denoted by 

jT(y, 
/*  1 

t) : = J  dx f (x ,  y, t) (25) 
I 

t "  1 

g(y, t) := J dx g(x, y, t) (26) 
- - I  

For complete maps, i.e., maps T that are piecewise monotonous on inter- 
vals [a,.,ai+~] and that satisfy T(a,.)= 1 or T(ai)= --1 for all a~, one can 
easily prove the following. 

I n t e g r a t i o n  L e m m a ,  Let T be a complete map and let f ( x ,  y, t) 
and g(x, y, t) be two functions satisfying Eq. (24). Then the marginal func- 
tions coincide: 

f ( y ,  t) -- g(y, t) (27) 

The proof is trivial and just relates to an elementary property of the 
Perron-Frobenius operator. 
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Let us now apply the integration lemma to Eqs. (15)-(22). We denote 
the marginal functions as follows: 

Po(Y, t)= f dx ~p(x, y, t) (28) 

t) = f dx a(x, y, t) (29) o~( y,  

fl(y, t) = f dx b(x, y, t) (30) 

y(y, t)= f dx c(x, y, t) (31) 

6(y, t )= f dx d(x, y, t) (32) 

Applying the integration lemma to Eq. (15) yields just the trivial statement 
Po(Y, t)=po(y, t). But from the higher-order equations we get nontrivial 
statements. Equation (16) yields 

o~f  dx xcp(x, y , t )=O (33) 

Equation (20) implies 

_~;  63 163 2 63 
dxxa(x, y , t)=~-f  (ypo(y,t)) + ~ y z  f dx x2~o(x, y, t ) -~ tPo(y ,  t) (34) 

Equation (21) gives 

__ 63 63 63 1 0 2 f dx x2a(x ' t ) -~o~(y ,  t) 63yfdxxb(x,  y, t )= ~yy (ycc(),, t)) +~  ~ y  2 y, 

+ f d x x ( - 2 + 6 3  63 l 2 632`1 63 -~ - y -~y - -~ x -~y2 ) -~y Cp(x, v, t ) 

(35) 

Finally, Eq. (22) yields 

63 1 632 63 
~y f dxxc(x,  y, t)=~y(y/3(y,  t))+~-~y z f dxx2b(x, y, t )-- '~/3(y, t)  

_f xx{ _o o lx2O ? - ~ +  Y-~y+-~ 63y2j 63ya(X, Y , t) 
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0 0 

! 2f , o } 
+ 2 ay2 3 dx x-~o(x, y, t ) - -~  po(y, t) 

{1 0 1 02 1 0 102 } 
+ y-~y+~yZoy 2 2qOt 2~-~2 po(y,t) 

//0 2 1 03) f  
+ + 5 y ax x2 (x, y, t) 

+-~y4104 f dx X4(p(X, y, t) (36) 

Let us first deal with the zeroth-order term ~o(x, y, t). Equation (15) is 
solved by any function q~(x, y, t) of the form 

q~(x, y, t)=h(x)Po(Y, t) (37) 

where h(x) is the natural invariant density of the T-dynamics. To obtain a 
compact notation, we will use the symbol ( . . . )  for expectations with 
respect to h(x). Equation (33) then implies 

0 c 0 
oyX- Po(Y, t) J dx xh(x) = ( x )  oy-4- Po(Y, t) = 0 (38) 

In case that Po(Y, t):~const.,, this means ( x ) = 0 ,  which shows that the 
ansatz (14) makes sense for maps with vanishing average only. Equation 
(34) becomes 

0_~ 1 0 ~- 0 0 (ypo(y , t ) )+-~(x2)~y2PO(y , t ) -~po(y , t )=~yf  dxxa(x ,y , t )  (39) 

This is a kind of inhomogeneous Fokker-Planck equation with a source 
term (O/3y) ~ dx xa(x, y, t). It reduces to a Fokker-Planck equation for the 
case that (O/Oy) ~ dx xa(x, y, t) = 0. For the case that (O/Oy) ~ dx a(x, y, t) 
is proportional to (02/Oy :) Po(Y, t), we also obtain a Fokker-Planck equa- 
tion, but with a different diffusion constant. Hence, in order to determine 
Po(Y, t), we have to determine ~ dxxa(x, y, t) with the help of Eq. (16). 
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4. S I M P L I F I C A T I O N  FOR DOUBLE S Y M M E T R I C  M A P S  

We now consider a subclass of maps T determined by the property 
that both the mapping T as well as its natural invariant density h are sym- 
metric: 

T(x) = T ( - - x )  (40) 

h(x) = h ( - x )  (41) 

We call these types of maps "double symmetric." Examples are maps 
conjugated to even Tschebyscheff polynomials. For double-symmetric maps 
we have 

1 0 
.,-~ r-'(.,-') ~ IT'(x)---~l xh(x) -~y Po(Y, t ) = 0  (42) 

since for each x, - x  is also a preimage. Hence Eq. (16) reduces to 

1 
a(x', y, t)= Z IlT'(x) ~ a ( x '  y' t) (43) 

x r  T - I ( x  ' ) 

Notice that this is just the same equation as the one satisfied by ~o. It is 
solved by a function of the form 

a(x, y, t)=h(x)~(y, t) <44) 

Moreover, we obtain 

1 { [-~y(ypo(y,t)) b(x',y,t)= ~" IT'(x)l b(x,y,t)+h(x) 0 
x ~  T - I I x  ' ) 

1 3 2 3 , 
+ ~ x  2 ~y,_po(y,t) ~tPo(y t)]} 

1 { x 0 c(x', y, t ) =  ~ IT'(x)I c(x, y, t)-- -fffiyb(X, y, t) 
x ~ T - I ( x  ' ) 

02 a 
+h(x'[~(Y~176 

1 { x 3 d(x',y,t)= ~ IT'(x)l d(x ,y , t ) -  -~yC(X, 
x ~ T - I I x  ' } 

1 02 0 
+~ X2~y2b(x, y, t)-~tb(x, y, t) 

(45) 

(46 )  

t) + Ox--(yb(x, y, t)) Y, oy 
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0 0 

1 ~ 3 2  3 
+~ X-~yz PO(y, t ) - ~  po(y, t)) 

+ 2yl ~fyPo(y,t)+~yl 2 02~y, PO(y,t) 

0 1 2 02"~ 02 
+ x  2 l + ~ y ~ - - f y + g x  -~yZ) Oy--5_ po(y, t ) 

1 0 1 0  2 1~  
--~Po(Y, t)+~Po(Y, t)--~-~.Po(Y, t)J~ (47) 

The integrated equations reduce to 

0 1 0 2 0 
O=-~y(ypo(y,t))+~(x2)~y2Po(y,t)-~tPo(y,t) (48) 

0 c  0 1 02 0 
dxxb(x, y, t )=~y  (yct(y, t ) )+~  (x 2) Oy---Sot(y, t)-~to~(y, t) (49) 

0 f dx xc(x, y, t) 0 1 02 0 ', 

1 0 1 z, 02 02 03 
+ -~Y~-f+~Y-~y2+(x2)~y2+~(x2) Yay3 

1 04 1 0 1 0 2  l 
+ ~ (x4) - - -  ~ 4 Po(Y, t) (50) Oy 4 Ot 2 at2] 

Notice that Eq. (48) is the Fokker-Planck equation. We obtain the result 
that for double-symmetric maps the diffusion constant is always given by 
(x2). Equation (49) is of the same type as Eq. (39); it is an inhomo- 
geneous Fokker-Planck equation, but now--due to the condition of 
double symmetry--it is satisfied by ~(y, t) rather than Po(Y, t). 

Subtracting the zero given by Eq. (48) from the right-hand side of 
Eq. (45), we may also write Eq. (45) as 

1 
b(x', y, t)= y, 

x~ r-',.,.', IT'(x)I 

1 0 2 
x{b(x,y,t)+h(x)~(x2-(xZ))-~y,_po(y,t)} (51) 
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Similarly, Eq. (46) can be written as 

c ( x ' , y , t ) = ~  1 { O~ x~:T-I(x') IT'(x)I c(x, y, t ) - x  b(x, y, t) 

+ h(x) -~y f dX xb(x, y, t) +~ ( x - -  ( x2) ) -~y2 O~(y, t) (52) 

5. EXPLICIT S O L U T I O N  FOR T ( x } = l - 2 x  a 

Although the functional equations of the previous sections look quite 
complicated, it is remarkable that for certain mappings T an explicit solu- 
tion can be found. An example is the Ulam map T(x)= 1 -  2x 2. Here we 
have ( x  2) = 1/2, and the stationary solution of the Fokker-Planck equa- 
tion (48) is given by 

Po( Y, t) = e - 2;.-' (53) 

To obtain the next-order correction term a(y, t), we first have to determine 
the inhomogeneous source term (O/Oy) Jdxxb(x ,  y , t )  in Eq.(49) by 
solving Eq.(51). Let us choose the following ansatz for the solution of 
Eq. (51): 

b(x, y, t)=h(x)rio(Y, t)+ xh(x) ri~( y, t) (54) 

Here rio and ri~ are appropriate functions independent of x. Putting 
Eq. (54) into Eq. (51), we obtain on the left-hand side 

l=h(x ' )  rio()', t) + x'h(x') rit(y, t) 

= h( T(x))[flo(y, t) + (1 - 2x 2) ill(Y, t)] (55) 

and on the right-hand side 

1 [h(x)flo(y , t )+xh(x)r i , (y ,  t) 
r =  E IZ'Ix)l _V'E T - I ( x  ') 

1 , a-' 
2,/Oy z Po(Y, t)] 

= E h(x) I l a: ] .,-~ r-,~x,~ IT'(x)[ rio(Y, t ) - ~ ( l  - 2 x  z) ~yzPo(Y, t) (56) 
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From l =  r we get fl0(Y, t) arbitrary and 

1 02 
fl,(y, t) = - ~  Oy----5_ Po(Y, t) (57) 

Thus, in the stationary case Eq. (53) yields 

fl ,(y, t)= (1 - 4 y  2) e --'-'a 

From this we can evaluate the left-hand side of the 
Fokker -Planck  equation (49): 

,(2)"-" fdxxb(x ,y , t )=(x ' - ) f l l (y , t )=~ (1 - 4 y 2 )  e - 2-''-" (59) 

The stationary solution of Eq. (49) satisfies 

Oot(y)+4yo~(y)=2 ( 1 - 4y-') e-2-' ' + const (60) 
0y 

In general, all solutions of the first-order linear differential equation 

a 
0-7 ~ + g(Y) ~ + f(Y) = 0 (61) 

are given by 

(58) 

inhomogeneous 

oc(y)=e-O<")I C - s  f (y )e~ ") ] (62) 

Here G is an indefinite integral of g, 

0 -~y G(y)= g(y) (63) 

and J~ . . .  denotes an indefinite integral of the argument. In our case 

g(y)  = 4 y  (64) 

f(y)--2 (4y 2 -  1) e-- ' - r  const (65) 
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This yields 

G(y)  =21, 2 (66) 

" '  (4y2-  l) +c~ I e2y-" (67) ~(y) = e --Y- C - 2 jx 

For C = const = 0 we obtain 

e - _ ) . -  . - ~ ) - j  (68) 

To obtain the second-order correction term, we have to solve the 
coupled system of equations (50) and (52). Putting Eq. (54) into Eq. (52) 
and again using the symmetry of the preimages of T, we can write Eq. (52) 
a s  

1 (c(x, y, t) c(x', y, t)= Z Ir '(x)l 
. r e  T - I ( x  ' ) ( 

l a  I O  2 
+(1-2x ' - )h(x)[ -~yf l , (y , t ) - -~y2~(y , t ) ]}  (69) 

Similarly as Eq. (51 ), this equation is solved by the ansatz 

c(x, y, t) =h(x)  Yo(Y, t)+ xh(x) )h(Y, t) (70) 

We obtain ?o(Y, t) arbitrary and 

02 
1 O 1 ~ v  2~(y' 7,( y, t) =-~ ~y fl,(y, t) --~ . t) (71) 

Putting Eqs. (70), (71), (54), and (57) into Eq. (50), we arrive at the 
following equation for the unknown function flo(Y, t )=  fl(y, t): 

a 1 O z 0 
0 =~y (yfl(y, t)) +-~y2f(Y, t)--Nil(y, t) 

1 O 1 ~ 0 2 1 a 3 5 0 4 
+ ~Y-~y+~(Y-+l)~yZ+-~Y~v3+640y4 

1 o 1_o2l l a3  
2 +Ot 2c3t-J p~ 3~(y't) (72) 
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In the stationary case, we can use Eqs. (53) and (68) to obtain 

0 1 0  2 + ( 2 ) 1 / 2 ( ~ y 6 _ _  ~_) O=-~y(yfl(y))+-~y2fl(y) 68y4 + 46y 2 -  e-2y 2 
(73) 

One can easily check that this differential equation is solved by 

fl(y)=(2)l/2 (3---~ y6-3---~ y4 + l---~ y2-3~--~)e-2y: (74) 

The final result for the stationary probability density, 

8 y 3 +  p(y)=(2)l/2 {l +'cl/2(---~ 2y) 

+"c(3--~ y6--3~ y4+l~ y2--34~)WO(r3/2)}e-2-v" (75) 

is plotted in Fig. 1 for two different values of r ~/2. The coincidence with a 
numerically obtained histogram of iterates of the y variable of the map (1) 
is excellent. In particular, the slight asymmetry of the distribution is 
reproduced correctly. 

Our perturbative approach can (in principle) be extended to arbitrarily 
high orders in r ~/2. It is interesting to notice that the non-Gaussian correc- 
tions of order r k/E, k = 0, 1, 2, multiplying the Gaussian function in Eq. (75) 
are of simple polynomial structure. We conjecture that this is also true for 
the higher orders k >/3. In this case our approach defines an entire set of 
polynomials ~ in the sense that the k th-order correction term is of the 
form rk/E(2/;z)l/2d,.~ak(y ) exp(-2yZ). The first three polynomials ~o, ~ ,  ~2 
are 

dJ o = 1 (76) 

8 y3 
#l = - 3  +2y  (77) 

We would like to remark that Eq. (75) has already been derived in 
ref. 12; however, it was obtained by a completely different graph-theoretic 
method. The advantage of the method presented here is that in principle it 
is applicable to an arbitrary dynamics T, rather than just to the special 
example T(x) = 1 - 2 x  2. 
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Fig. 1. Histogram of the y variable of the map {l) with T(x)= 1 - 2 x  2, y=  l, and 
(a) r I/2= 0.20, ( b ) r ~ =  0.05. Also shown is the second-order analytical result, Eq. (75). 
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We once again notice t~2'~61 that the Ulam map is distinguished in 
comparison to other mappings. For this map the first-order correction 
term ~(y, t) obeys a relatively simple differential equation, namely the 
inhomogeneous Fokker-Planck equation 

O t)) +1  O 2 --ay ( yct( y,  -~y2 Ct( y ,  t ) - O ~( y,  t) . . . .  
1 03 
8 a~ Po(Y, t) (79) 

Moreover, the second-order correction term f l (y ,  t) obeys the relatively 
simple equation (72). In general, for some arbitrary mapping T the correc- 
tion terms obey the much more complicated equations (34)-(36). 
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